
Semantic features for food image recognition with
geo-constraints

Xinhang Song, Shuqiang Jiang, Ruihan Xu, Luis Herranz
Key Laboratory of Intelligent Information Processing

of Chinese Academy of Sciences (CAS),

Institute of Computer Technology, CAS,

Beijing, 100190, China.

{xinhang.song,shuqiang.jiang,ruihan.xu,luis.herranz}@vipl.ict.ac.cn

Abstract—Food-related photos have become very popular, due
to social networks, food recommendation and dietary assessment
systems. Reliable annotation is essential in those systems, but user-
contributed tags are often non-informative and inconsistent, and
unconstrained automatic food recognition still has relatively low
accuracy. Most works focus on exploiting only the visual content
while ignoring the context. In this paper, we improve food image
recognition using two novel components. First, different from the
conventional approach representing image in a visual feature space,
we represent images in a semantic space, where we model context
information. Secondly, we leverage the geographic context of the
user and information about restaurants to simplify the classification
problem. Thus, we propose a food recognition framework based on
semantic features and location-adaptive classification. We collected
a restaurant-oriented food dataset with food images, dish tags and
restaurant-level information, such as the menu and geographic
location. Experiments on this dataset show that exploiting geolo-
cation improves around 30% the recognition performance, and the
semantic feature has a gain of 3%-10% to the other visual features.

Index Terms—semantic featuures; location-adaptive; food im-
age recognition;

I. INTRODUCTION

Recently, we are witnessing a fast increase of the visual

data both on internet platforms and mobile devices. Instead

of only relying on textual information, nowadays users tend

to use images to record their daily activities and interact with

other people. Images are easy to capture, convenient to store

and share, and more expressive to capture a particular moment.

However, automatically and accurately recognizing images

still remains a big challenge and hinders many potential

applications. Although there exist many tags and surrounding

contextual descriptions for internet and mobile photos, they

are often noisy, and inconsistent, leading to unreliable tags.

Although, automatic image recognition has been studied for

a long time[11], [23], [16], image recognition performance

is still far from satisfactory for many real applications. The

main challenge lies in how to effectively obtain effective visual

representations from images and transform them to semantic

descriptions.

In most cases, image recognition systems do not exploit

useful knowledge about the particular tasks, . For instance,

the contextual information directly related with the images.

Images captured from mobile devices are not only composed

of pixels, but they also have external contextual properties

such as geographic information, temporal information, etc.,

which can provide valuable information for image recognition.

How to design task-oriented image recognition techniques by

flexibly integrating contextual information into the recognition

algorithms is an important problem. In this paper, we focus on

a specific yet important task: food image recognition. Food is

not only an important part in many social events, but also

the central topic in daily social interactions. Food images

are widely available on social platforms and mobile devices.

According to the Huffington Post1, food has become the most

popular category, with 57% of Pinterest2 users interacting with

food-related photos. A recent market research report suggests

that 49% of the consumers learn about food through social

networks[21]. Automatic and accurate food image recognition

should be useful for many applications such as dish photo

retrieval and organization, food recommendation and dietary

assessment. Food image recognition is a challenging problem,

as the actual appearance of food varies greatly for different

dishes. Photos of the same dish may vary greatly, due to

different locations and restaurants.. Even for images of the

same dish taken in the same restaurant, the visual appearance

may also vary due to the potential point of view, background,

and lighting conditions.

How to design an effective method to represent dish images

is essential in food recognition. For instance, Joutou and

Yanai [8] proposed an automatic food image recognition

system based on multiple kernel learning (MKL) integrating

features, like color, texture and SIFT. Zong et al.Kawano et
al.[9] use Fisher vectors over HOG patches. Yang et al. [26]

propose using pairwise local features to capture important

shape characteristics and spatial relationships between food

ingredients. Thus, in general, the techniques used for image

representation are based on visual features. The widely used

frameworks are based on the bag-of-words (BOW) model. The

first step is extracting local visual features, such as SIFT[14]

or HOG[6], then encoding them into a global representation

using the BoW model[20], or its sparse variations[25], [23].

However, one limitation of visual features is that they do

not explore the semantic context[18]. Some works[17], [19],

1http://www.huffingtonpost.com
2http://www.pinterest.com
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[18], [12], [13], [22], [10] design features in a semantic

space. Object bank[12] proposes a semantic representation

that encodes the response of a number of pretrained object

classifiers at different spatial locations. Classemes[22] are

intermediate semantic representations based on a set of 2659

basis classes. In [18], Dirichlet mixture models (DMM) are

used to model co-occurrence patterns. Similarly, the semantic

manifold (SM)[10] is a discriminative alternative which uses

a support vector machine (SVM) over SMNs combined with

a suitable kernel for the multinomial simplex: the negative

geodesic kernel (NGD)[27], implicitly addressing the co-

occurrence modeling.

In most cases, dish images are taken when users are dining

out in a restaurant. In this scenario, external geographical

information directly associated with the image context can be

obtained. Built-in GPS receivers in mobile cameras can be

used for outdoor positioning[15], while network/WiFi-based

location techniques can obtain geographical locations even in

indoor environments [1], [5]. In general, we can assume that

an approximate location of the dish photo can be guaranteed.

As illustrated in Fig. 1, from the estimated geographical

location, dish photos can be restricted in a specified area,

so the candidate restaurants where the photos come from

can be estimated. The goal of dish photo recognition is to

estimate the most probable dish labels, which we assume

are contained in the menus of the candidate restaurants. So

the candidate dish label set for image recognition is also

limited to a smaller group. The red arrows in Fig. 1 show

the three aspects of the geographical context associated with

the photos. The first one is the direct geographical location,

the other two are indirect information related with candidate

restaurants and dish labels. We need to effectively use this

information to boost the performance of dish recognition.

Geolocation has been widely studied to restrict the candidate

images or categories for image retrieval and recognition, yet

most of earlier works focus on landmark applications[24],

[28], [4]. Landmarks can be consider rigid and intrinsically

invariant. Photos of a particular landmark contain consistent

visual patterns despite different lighting conditions, capturing

positions, and background possibilities, so partial duplicate

and BOW retrieval techniques based on local features can be

directly applied for this scenario. Moreover, landmark images

have obvious geographical properties they can be effectively

integrated into the retrieval framework. Based on the retrieval

results, KNN-based classification can be used for landmark

recognition[13], [7]. However, dish recognition is a different

problem. Dishes are non-rigid objects, but highly deformable.

Visual appearances of dish photos are different no matter

whether they belong to the same dish category or the same

dish instances. On the other hand, in most cases, the available

training data for the dish recognition is limited, especially

for a dish in a particular geographical area. Based on the

above analysis, investigations on dish image representation and

classification techniques by fully considering the properties of

dish images and effectively utilizing geographical information

are desired.

In this paper, we propose a framework to represent dish

images using semantic features for location-adaptive classi-

fication. The proposed semantic features are represented by

the dish posterior probability distributions. We firstly learn

these probability distribution using GMM. Then, using the

semantic features, discriminative classifiers with a suitable

feature embedding for the semantic space are trained for all the

dish categories in the database. For a query image including its

geographical location, candidate restaurants can be obtained by

searching nearest restaurants, then only those available in the

candidate restaurants are evaluated to make the prediction. Our

technique is suitable for close-up dish photos as it occupies

most of the dish photos. Based on the proposed semantic

features for location-adaptive classification, the contribution

of this paper is twofold:

• We use semantic features for dish recognition, improving

the performance compared to of visual features.

• We propose a recognition framework which exploits

geolocation in the semantic space, adapted to the problem

of dish recognition in restaurants.

II. SEMANTIC FEATURE

A. Model and learning

The probability distribution of a vocabulary of dishes is

estimated from a set of local visual features defined in some

visual feature space X . Each image from the dataset is repre-

sented as a bag of local visual descriptors I = {x1, . . . ,xN},
xn ∈ X , densely sampled in a grid with N local patches.

Note that visual features are localized in patches, but there

are no corresponding patch labels. To address this problem,

dish categories are also used as patch theme vocabulary, so we

will refer to them as dish categories (or semantic concepts, in

general) to both image categories and patch themes.

Images are modeled using a generative process, in which a

dish category w is first sampled, and then N (patch) feature

vectors are generated from PX|W (xn|w). Given a new image,

the category can be predicted using the Bayes rule

PW |X(w|I) =
∏N

n=1 PX|W (xn|w)PW (w)∏N
n=1 PX (xn)

∝
∏N

n=1 PX|W (xn|w)∏N
n=1 PX (xn)

(1)

which assumes a uniform prior for PW (w).
As patch labels are not available, theme conditional distri-

butions PX|W (xn|w) are learned using weak supervision via

image labels. In this setting, we have a single label available

for each image, indicating that the theme (i.e. labeled dish

category) is present in the bag of patches, but it does not

imply that other themes are absent. Each theme conditional

distribution PX|W (x|w) is modeled as a Gaussian mixtures

model (GMM), learned over a set of training images[3].

B. Inference

Once we have learned theme GMMs, we can estimate the

distribution of concepts for a new image I using the posterior
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Fig. 1. The association of dish photos with geographical location and extended geo-information

probability PW |X(w|I). For a vocabulary with M scene cate-

gories, the vector of posterior probabilities s = (s1, ..., sM )T

with sw = PW |X(w|I), is referred to as the semantic multi-
nomial (SMN) of the image I[17]. The SMN is a probability

vector of concepts that lies on the simplex ΔM−1 (referred to

also as semantic space or semantic simplex) and provides a

compact yet rich semantic description of the image. The whole

process can be seen as a mapping f : XN �→ ΔM−1 from the

set of local visual descriptors in the image to the semantic

space. Finally, given a new image, a label can be predicted

from a SMN by simply selecting the concept with maximum

probability (we will refer to this decision method as Bayes

classification).

Note that this mapping is defined for images, but can also

be used over patches to extract local SMNs as fpatch : X �→
ΔM−1. This alternative view allows us to infer the image

SMN from patch SMNs. Thus, we can define a patch-to-image

operation. In particular, for (1) the corresponding operation is

just a product of the semantic multinomials

sw = Ωprod
w (I) =

N∏
n=1

snw (2)

where

snw = PW |X (w|xn) =
PX|W (xn|w)PW (w)

PX (xn)
(3)

is the w-th element of the patch SMN sn.

C. Multi-feature combination

Instead of a single type of visual feature, we now consider

a set of complementary ones V (in our experiments V =
{gradient, shape, color}). Each feature v ∈ V generates a set

of local visual descriptors Iv = {xv
1, . . . ,x

v
N}, xv

n ∈ Xv , and

I = {I1, . . . , I |v|} represents all the features in the image.

Now we assume that we learn feature-specific theme models

PXv|W (xv
n|wv), learned independently in the same way as in

the single feature case. Similarly to (3), we can define the

feature-specific patch SMN as

svnw = PWv|Xv (wv|xv
n) =

PXv|Wv (xv
n|wv)PWv (wv)

PXv (xv
n)

(4)

Using the Bayes rule we can extend (1) as

sw =

∏
v∈V PWv|W (wv|w)PW (w)

∏N
n=1 PXv|Wv (xv

n|wv)∏N
n=1 PXv (xv

n)
(5)

where PWv|W (wv|w) is uniform between each type of feature.

Using (4) we can further rearrange (5) into

sw =
N∏

n=1

∏
v∈V

PW |Wv (w|wv) svnw (6)

III. SEMANTIC FEATURE EMBEDDING

In this section, we discuss about the distance measurement

and distance embedding for the feature in the semantic space.

As the SMN s = (s1, ..., sM)T is defined in the semantic

simplex ΔM−1, to exploit the geometry of the simplex,

a suitable distance is the geodesic distance dGD (s, s′) =

2 arccos
(〈√

s,
√
s′
〉)

where
√
s denotes element wise square

root. A negative geodesic distance (NGD) kernel can be de-

fined from this distance as kNGD (s, s′) = −dGD (s, s′)[27],

which is used in combination with SVM. However, using NGD

kernel requires kernel SVM, which has more the computa-

tional complexity than using linear SVM, especially on the

large-scale dataset. To adapt NGD kernel to the linear SVM,

one way is embedding this kernel into the feature. In [10],

the authors propose an approximate embedding for the NGD

kernel, and use it with the linear SVM. This approximate

embedding can decrease the computational complexity, but

also lose the accurracy for the recognition.
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Now we propose an exact feature embedding method using

a dictionary. We assume a mapping φ (s) to a different space

(i.e. kernel space), with the kernel dictionary U, it can be

mapped as:

ᾱ = argmin
α
‖φ (s)− Uα‖2 + λ ‖α‖1 (7)

where α is the codes, U = [φ (z1) , . . . , φ (zC)] is the kernel

dictionary, formed by the dictionary in Z = [z1, z2...zC ]
mapped to the kernel space, C is the size of the dictionary.

Instead of learning the dictionary in the kernel space, we

simply use K-means in the semantic space to learn Z (in fact,

as we will see, we do not need to explicitly compute U ). In

order to use the geodesic distance between two filtered SMNs

s and s′, we formulate the whole filtering and embedding as a

new kernel, obtained from the projected vectors on the NGD

kernel space as

kKCNF (s, s′) = kNGD

(
s̄, s̄′

)
= φNGD (s̄)

ᵀ
φNGD

(
s̄′
)

= (Uᾱ)
ᵀ (

Uᾱ′
)

(8)

where ᾱ and ᾱ′ are the codes for s̄ and s̄′. The corresponding

analytic solution is ᾱ = (UᵀU)
−1

UᵀφNGD (s̄) (note that

we do not have this solution for λ �= 0). By applying some

appropriate matrix transformations we can rearrange (8) as

kKCNF (s, s′) = (UᵀφNGD (s))
ᵀ
(UᵀU)

−1
(UᵀφNGD (s′))

= Kzs (s)
ᵀ
K−1

zz Kzs (s
′) (9)

where Kzs (s) = UᵀφNGD (s) and Kzz = UᵀU . Note

that no explicit mapping φNGD is necessary to compute

any of those matrices. As Kzz is positive definite, we can

find a decomposition GᵀG = K−1
zz (e.g. using the Cholesky

decomposition), which leads to

kKCNF (s, s′) = (GKzs (s))
ᵀ
(GKzs (s

′))
= φKCNF (s)

ᵀ
φKCNF (s′)

where we have an explicit mapping

φKCNF (s) = GKzs (s) (10)

that only depends on a set of words zi and the original (unfil-

tered) SMN s and s′. With (10) we can obtain embeddings of

semantic features that can be used for large scale classification.

IV. GEO-CONSTRAINED CLASSIFICATION

A. Geographically nearest classes

To use the geographical information associated to dish

photos, we first need to obtain the geographical neighborhood

relationship of dish images taken in restaurants. Since the

main properties of a restaurant are its geographic location

and its menu (i.e. the dish categories found in that partic-

ular restaurant), a restaurant can be represented as a pair

R = (Ψ,menu) where Ψ = (λ, φ) is the geographic location,

λ and φ denote latitude and longitude. The restaurant database

contains J restaurants with a combined total of D dishes. For a

given restaurant j ∈ {1, . . . , J}, the menu can be represented

as menuk =
{
r1, . . . , rDj

}
, where ri ∈ {1, . . . D} is the i-th

dish in the restaurant menu menuj , with Dj different dishes.

For a query image, we assume that the mobile phone will

obtain its current location Ψq = (λq, φq), which can be

typically estimated by triangulation or multilateration using

multiple sources, such as GPS satellites, cell phone towers

or wireless networks. In our work we also assume that the

error in the estimation is relatively isotropic and thus we select

as candidates the restaurants found within a circular area of

radius ε. The distance between the current location Ψq and

the location Ψj of the restaurant j can be approximated by

the spherical law of cosines

d (Ψq,Ψj) = rad×(sinφq sinφj + cosφq cosφj cos (λq − λj))
(11)

where rad is the radius of the Earth. Finally, the set of its

nearest restaurants is obtained as

Hq = H (Ψq, ε) = {j | d (Ψq,Ψj) ≤ ε, ∀j = 1, . . . , J} (12)

B. Classification model with geo-constraints

With the geographically nearest restaurants obtained, we

can select these restaurants as candidate restaurants, and the

unlikely dish categories which are not within the union of

the menus of these restaurants can be discarded. We first

train classifiers for all the dish categories in the database and

then evaluate only those available in the candidate restaurants.

We use linear SVMs due to the high dimensionality of the

aggregated semantic feature. We denote a (binary) classifier

f : T �→ R that maps a feature vector t ∈ T to a certain score.

A typical (one-against-all ) SVM classifier combines multiple

binary classifiers (one per category) and predicts the category

with the maximum score. Note that the negative samples are

selected from all the restaurants.

We assume that we have trained a pool of binary dish clas-

sifiers {f1, f2, . . . , fD}, where fi denotes the global classifier

for the dish category i. Once we have a set of candidate

restaurants Hq , the set of possible dish categories can be

obtained from their menus as M (Hq) =
⋃

j∈Hq
Mj . Based on

the geographical context related to the photo, we effectively

limit the potential dish categories. Thus we refer to this

as a geographical constraint or geo-constraint. Then, for a

feature vector x and a candidate restaurant set H , the classifier

predicts a category based on the candidate classifier with

maximum score

y∗ = argmax
i∈menu(Hq)

fi (t) (13)

V. EXPERIMENTS

A. Dish dataset

We collected data about restaurants in Beijing from an

online restaurant review site3. Each restaurant in our dataset

includes its location (coordinates of latitude and longitude), the

list of dishes (i.e. menu) and photos of each dish. We discarded

restaurants with less than 3 dishes in the menu and fewer than

3http://www.dianping.com
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TABLE I
OVERALL STATISTICS OF THE DATASET.

Min Average Max Total

Restaurants - - - 187
Dishes/restaurant 3 6.27 25 1173

Images/dish 15 38.82 438 45541

TABLE II
COMPARISON OF DIFFERENT FEATURES FOR DISH RECOGNITION.

Method No Location With Location
BoW[11] 7.3 41.7
Kdes[2] 16.8 51.1
LLC[23] 22.4 56.3

Fisher Vector[16] 26.4 59.0
Proposed 29.2 61.2

15 images per dish. Table.I shows the overall statistics of the

datasets. The dataset contains 187 restaurants with a combined

1173 dish categories (701 unique dish categories).

B. Comparison results

We learn semantic features using three types of the kernel

descriptors[2], and combine them in the semantic follow the

sectionII-C. We train 512 Gaussian mixture models for each

dish category to learn the SMN. For the feature embedding,

we train a 1024 size dictionary using the learned SMNs. We

use the same size dictionary for the other visual features.

We compare the proposed semantic feature with other visual

features. We consider four types of visual features: BoW,

kernel descriptors (Kdes), locality-constrained linear coding

(LLC) and Fisher Vector. The evaluation includes global mod-

els with and without considering geo-constraints. The results

are shown in Table II. Comparing with the visual feature with

best performance (Fisher Vector), the proposed method has

a gain of 3%. And it also can be seen that the location-

adaptive model improves the performance significantly, with a

gain about 30%. Note that, we learned the proposed semantic

features using the same Kdes visual descriptors. Comparing

with Kdes, the proposed method has a gain of 12.4% without

location-adaptive model, and a gain of 10.1% with location-

adaptive model.

VI. CONCLUSION

This paper investigates food image recognition using two

novel components:: food images are represented using seman-

tic features and the classification is adapted to the geographic

location via geo-constraints. We collected a restaurant-oriented

food dataset with food images, dish tags and restaurant-level

information, such as the menu and geographic location. We

evaluated the proposed method comparing with conventional

approaches based on visual features that ignore the geo-

graphical context. The comparison results show that semantic

features have better performance with a gain around 3% over

the best visual feature. Moreover, the location-adaptive model

can dramatically improve the performance with a gain about

30%.
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